Artificial Intelligence as a Potential Tool for Predicting Surgical Margin Status in Early Breast Cancer Using Mammographic Specimen Images.
Journal:
Diagnostics (Basel, Switzerland)
Published Date:
May 17, 2025
Abstract
: Breast cancer is the most common malignancy among women globally, with an increasing incidence, particularly in younger populations. Achieving complete surgical excision is essential to reduce recurrence. Artificial intelligence (AI), including large language models like ChatGPT, has potential for supporting diagnostic tasks, though its role in surgical oncology remains limited. : This retrospective study evaluated ChatGPT's performance (ChatGPT-4, OpenAI, March 2025) in predicting surgical margin status (R0 or R1) based on intraoperative mammograms of lumpectomy specimens. AI-generated responses were compared with histopathological findings. Performance was evaluated using sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), F1 score, and Cohen's kappa coefficient. : Out of a total of 100 patients, ChatGPT achieved an accuracy of 84.0% in predicting surgical margin status. Sensitivity for identifying R1 cases (incomplete excision) was 60.0%, while specificity for R0 (complete excision) was 86.7%. The positive predictive value (PPV) was 33.3%, and the negative predictive value (NPV) was 95.1%. The F1 score for R1 classification was 0.43, and Cohen's kappa coefficient was 0.34, indicating moderate agreement with histopathological findings. : ChatGPT demonstrated moderate accuracy in confirming complete excision but showed limited reliability in identifying incomplete margins. While promising, these findings emphasize the need for domain-specific training and further validation before such models can be implemented in clinical breast cancer workflows.
Authors
Keywords
No keywords available for this article.