Classification of non-small cell lung cancer by histologic subtype using deep learning in public and private data sets of computed tomography images.

Journal: Radiologia brasileira
Published Date:

Abstract

OBJECTIVE: To develop a deep learning system to classify non-small cell lung cancer (NSCLC) by histologic subtype-adenocarcinoma or squamous cell carcinoma (SCC)-from computed tomography (CT) images in which the tumor regions were segmented, comparing our results with those of similar studies conducted in other countries and evaluating the accuracy of automated classification by using data from the Instituto Nacional de Câncer, Brazil.

Authors

  • Marcos Antonio Dias Lima
    Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, RJ, Brazil.
  • Carlos Frederico Motta Vasconcelos
    Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
  • Roberto Macoto Ichinose
    Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, RJ, Brazil.
  • Antonio Mauricio Ferreira Leite Miranda de Sá
    Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, RJ, Brazil.

Keywords

No keywords available for this article.