AI-driven healthcare: Fairness in AI healthcare: A survey.

Journal: PLOS digital health
Published Date:

Abstract

Artificial intelligence (AI) is rapidly advancing in healthcare, enhancing the efficiency and effectiveness of services across various specialties, including cardiology, ophthalmology, dermatology, emergency medicine, etc. AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions by leveraging technologies such as machine learning, neural networks, and natural language processing. However, these advancements also introduce substantial ethical and fairness challenges, particularly related to biases in data and algorithms. These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups. This review paper examines the integration of AI in healthcare, highlighting critical challenges related to bias and exploring strategies for mitigation. We emphasize the necessity of diverse datasets, fairness-aware algorithms, and regulatory frameworks to ensure equitable healthcare delivery. The paper concludes with recommendations for future research, advocating for interdisciplinary approaches, transparency in AI decision-making, and the development of innovative and inclusive AI applications.

Authors

  • Sribala Vidyadhari Chinta
    Florida International University, Miami, Florida, United States of America.
  • Zichong Wang
    Florida International University, Miami, Florida, United States of America.
  • Avash Palikhe
    Florida International University, Miami, Florida, United States of America.
  • Xingyu Zhang
    Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
  • Ayesha Kashif
    Jose Marti MAST 6-12 Academy, Hialeah, Florida, United States of America.
  • Monique Antoinette Smith
    Emory University, Atlanta, Georgia, United States of America.
  • Jun Liu
    Department of Radiology, Second Xiangya Hospital, Changsha, Hunan, China.
  • Wenbin Zhang
    Department of Epidemiology and Medical Statistics School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China.

Keywords

No keywords available for this article.