A Three-Dimensional Phenotype Extraction Method Based on Point Cloud Segmentation for All-Period Cotton Multiple Organs.
Journal:
Plants (Basel, Switzerland)
Published Date:
May 22, 2025
Abstract
Phenotypic data of cotton can accurately reflect the physiological status of plants and their adaptability to environmental conditions, playing a significant role in the screening of germplasm resources and genetic improvement. Therefore, this study proposes a cotton phenotypic data extraction algorithm that integrates ResDGCNN with an improved region-growing method and constructs a 3D point cloud dataset of cotton covering the entire growth period under real growth conditions. To address the challenge of significant structural variations in cotton organs across different growth stages, we designed an innovative point cloud segmentation algorithm, ResDGCNN, which integrates residual learning with dynamic graph convolution to enhance organ segmentation performance throughout all developmental stages. In addition, to address the challenge of accurately segmenting overlapping regions between different cotton organs, we introduced an optimization strategy that combines point distance mapping with curvature-based normal vectors and developed an improved region-growing algorithm to achieve fine segmentation of multiple cotton organs, including leaves, stems, and flower buds. Experimental data show that, in the task of organ segmentation throughout the entire cotton growth cycle, the ResDGCNN model achieved a segmentation accuracy of 67.55%, with a 4.86% improvement in mIoU compared to the baseline model. In the fine-grained segmentation of overlapping leaves, the model achieved an R of 0.962 and an RMSE of 2.0. The average relative error in stem length estimation was 0.973, providing a reliable solution for acquiring 3D phenotypic data of cotton.
Authors
Keywords
No keywords available for this article.