Non-destructive detection of early wheat germination via deep learning-optimized terahertz imaging.
Journal:
Plant methods
Published Date:
May 30, 2025
Abstract
Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.
Authors
Keywords
No keywords available for this article.