Study on the Effect of the Envelope of Terahertz Unipolar Stimulation on Cell Membrane Communication-Related Variables.
Journal:
Research (Washington, D.C.)
Published Date:
Jul 15, 2025
Abstract
The development of terahertz science and technology has shown new application prospects in artificial intelligence. Terahertz stimulation can lead to information communication of cells. Terahertz unipolar picosecond pulse train stimulation can activate cell membrane hydrophilic pores and protein ion channels. However, the effect of the envelope of the terahertz unipolar stimulation remains unknown. This paper studies the effect of the envelope on membrane communication-related variables and the accompanying energy consumption by a cell model with considerations of hydrophilic pores and Na, K-ATPase. According to the results, terahertz unipolar picosecond pulse train stimulation can deliver the signal contained in its envelope into the variation rates of membrane potentials no matter whether the hydrophilic pores are activated or not and also into the variation rates of the ion flow via the pores after activation of the pores. In contrast, the ion flow via Na, K-ATPase seems irrelevant to the signal in the envelope. Moreover, the ion flows show a modulation effect on the variation rates of membrane potentials. The accompanying power dissipations in the cases of different envelopes are similar, as low as around the level of 10 W. The results lay the foundations for application in artificial intelligence, like brain-machine communications.
Authors
Keywords
No keywords available for this article.