An Expanded Analysis of Pharmacogenetics Determinants of Efavirenz Response that Includes 3'-UTR Single Nucleotide Polymorphisms among Black South African HIV/AIDS Patients.
Journal:
Frontiers in genetics
Published Date:
Jan 7, 2016
Abstract
INTRODUCTION: Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor prescribed as part of first-line highly active antiretroviral therapy (HAART) in South Africa. Despite administration of fixed doses of EFV, inter-individual variability in plasma concentrations has been reported. Poor treatment outcomes such as development of adverse drug reactions or treatment failure have been linked to EFV plasma concentrations outside the therapeutic range (1-4 μg/mL) in some studies. The drug metabolizing enzyme (DME), CYP2B6, is primarily responsible for EFV metabolism with minor contributions by CYP1A2, CYP2A6, CYP3A4, CYP3A5, and UGT2B7. DME coding genes are also regulated by microRNAs through targeting the 3'-untranslated region. Expanded analysis of 30 single nucleotide polymorphisms (SNPs), including those in the 3'-UTR, was performed to identify pharmacogenetics determinants of EFV plasma concentrations in addition to CYP2B6 c.516G>T and c.983T>C SNPs.
Authors
Keywords
No keywords available for this article.