Empowering Generalist Material Intelligence with Large Language Models.
Journal:
Advanced materials (Deerfield Beach, Fla.)
Published Date:
May 12, 2025
Abstract
Large language models (LLMs) are steering the development of generalist materials intelligence (GMI), a unified framework integrating conceptual reasoning, computational modeling, and experimental validation. Central to this framework is the agent-in-the-loop paradigm, where LLM-based agents function as dynamic orchestrators, synthesizing multimodal knowledge, specialized models, and experimental robotics to enable fully autonomous discovery. Drawing from a comprehensive review of LLMs' transformative impact across representative applications in materials science, including data extraction, property prediction, structure generation, synthesis planning, and self-driven labs, this study underscores how LLMs are revolutionizing traditional tasks, catalyzing the agent-in-the-loop paradigm, and bridging the ontology-concept-computation-experiment continuum. Then the unique challenges of scaling up LLM adoption are discussed, particularly those arising from the misalignment of foundation LLMs with materials-specific knowledge, emphasizing the need to enhance adaptability, efficiency, sustainability, interpretability, and trustworthiness in the pursuit of GMI. Nonetheless, it is important to recognize that LLMs are not universally efficient. Their substantial resource demands and inconsistent performance call for careful deployment based on demonstrated task suitability. To address these realities, actionable strategies and a progressive roadmap for equitably and democratically implementing materials-aware LLMs in real-world practices are proposed.
Authors
Keywords
No keywords available for this article.