AI-driven personalized nutrition: RAG-based digital health solution for obesity and type 2 diabetes.

Journal: PLOS digital health
Published Date:

Abstract

Effective management of obesity and type 2 diabetes is a major global public health challenge that requires evidence-based, scalable personalized nutrition solutions. Here, we present an artificial intelligence (AI) driven dietary recommendation system that generates personalized smoothie recipes while prioritizing health outcomes and environmental sustainability. A key feature of the system is the "virtual nutritionist", an iterative validation framework that dynamically refines recipes to meet predefined nutritional and sustainability criteria. The system integrates dietary guidelines from the National Institute for Public Health and the Environment (RIVM), EUFIC, USDA FoodData Central, and the American Diabetes Association with retrieval-augmented generation (RAG) to deliver evidence-based recommendations. By aligning with the United Nations Sustainable Development Goals (SDGs), the system promotes plant-based, seasonal, and locally sourced ingredients to reduce environmental impact. We leverage explainable AI (XAI) to enhance user engagement through clear explanations of ingredient benefits and interactive features, improving comprehension across varying health literacy levels. Using zero-shot and few-shot learning techniques, the system adapts to user inputs while maintaining privacy through local deployment of the LLaMA3 model. In evaluating 1,000 recipes, the system achieved 80.1% adherence to health guidelines meeting targets for calories, fiber, and fats and 92% compliance with sustainability criteria, emphasizing seasonal and locally sourced ingredients. A prototype web application enables real-time, personalized recommendations, bridging the gap between AI-driven insights and clinical dietary management. This research underscores the potential of AI-driven precision nutrition to revolutionize chronic disease management by improving dietary adherence, enhancing health literacy, and offering a scalable, adaptable solution for clinical workflows, telehealth platforms, and public health initiatives, with the potential to significantly alleviate the global healthcare burden.

Authors

  • Anand K Gavai
    Industrial Engineering & Business Information Systems, University of Twente, Enschede, The Netherlands.
  • Jos van Hillegersberg
    Industrial Engineering & Business Information Systems, University of Twente, Enschede, The Netherlands.

Keywords

No keywords available for this article.