Synthetic medical education in dermatology leveraging generative artificial intelligence.
Journal:
NPJ digital medicine
Published Date:
May 4, 2025
Abstract
The advent of large language models (LLMs) represents an enormous opportunity to revolutionize medical education. Via "synthetic education," LLMs can be harnessed to generate novel content for medical education purposes, offering potentially unlimited resources for physicians in training. Utilizing OpenAI's GPT-4, we generated clinical vignettes and accompanying explanations for 20 skin and soft tissue diseases tested on the United States Medical Licensing Examination. Physician experts gave the vignettes high average scores on a Likert scale in scientific accuracy (4.45/5), comprehensiveness (4.3/5), and overall quality (4.28/5) and low scores for potential clinical harm (1.6/5) and demographic bias (1.52/5). A strong correlation (r = 0.83) was observed between comprehensiveness and overall quality. Vignettes did not incorporate significant demographic diversity. This study underscores the potential of LLMs in enhancing the scalability, accessibility, and customizability of dermatology education materials. Efforts to increase vignettes' demographic diversity should be incorporated to increase applicability to diverse populations.
Authors
Keywords
No keywords available for this article.