Integrating Artificial Intelligence in Dermatological Cancer Screening and Diagnosis: Efficacy, Challenges, and Future Directions.
Journal:
Annual review of biomedical data science
Published Date:
May 1, 2025
Abstract
Skin cancer is the most common cancer in the United States, with incidence rates continuing to rise both nationally and globally, posing significant health and economic burdens. These challenges are compounded by shortages in dermatological care and barriers to insurance access. To address these gaps, artificial intelligence (AI) and deep learning technologies offer promising solutions, enhancing skin cancer screening and diagnosis. AI has the potential to improve diagnostic accuracy and expand access to care, but significant challenges restrict its deployment. These challenges include clinical validation, algorithmic bias, regulatory oversight, and patient acceptance. Ethical concerns, such as disparities in access and fairness of AI algorithms, also require attention. In this review, we explore these limitations and outline future directions, including advancements in teledermatology and vision-language models (VLMs). Future research should focus on improving VLM reliability and interpretability and developing systems capable of integrating clinical context with dermatological images in a way that assists, rather than replaces, clinicians in making more accurate, timely diagnoses.
Authors
Keywords
No keywords available for this article.