Multi-convolutional neural networks for cotton disease detection using synergistic deep learning paradigm.

Journal: PloS one
Published Date:

Abstract

Cotton is a major cash crop, and increasing its production is extremely important worldwide, especially in agriculture-led economies. The crop is susceptible to various diseases, leading to decreased yields. In recent years, advancements in deep learning methods have enabled researchers to develop automated methods for detecting diseases in cotton crops. Such automation not only assists farmers in mitigating the effects of the disease but also conserves resources in terms of labor and fertilizer costs. However, accurate classification of multiple diseases simultaneously in cotton remains challenging due to multiple factors, including class imbalance, variation in disease symptoms, and the need for real-time detection, as most existing datasets are acquired under controlled conditions. This research proposes a novel method for addressing these challenges and accurately classifying seven classes, including six diseases and a healthy class. We address the class imbalance issue through synthetic data generation using conventional methods like scaling, rotating, transforming, shearing, and zooming and propose a customized StyleGAN for synthetic data generation. After preprocessing, we combine features extracted from MobileNet and VGG16 to create a comprehensive feature vector, passed to three classifiers: Long Short Term Memory Units, Support Vector Machines, and Random Forest. We propose a StackNet-based ensemble classifier that takes the output probabilities of these three classifiers and predicts the class label among six diseases-Bacterial blight, Curl virus, Fusarium wilt, Alternaria, Cercospora, Greymildew-and a healthy class. We trained and tested our method on publicly available datasets, achieving an average accuracy of 97%. Our robust method outperforms state-of-the-art techniques to identify the six diseases and the healthy class.

Authors

  • Afira Aslam
    Department of Creative Technologies, Faculty of Computing and Artificial Intelligence, Air University, Islamabad, Pakistan.
  • Syed Muhammad Usman
    Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan.
  • Muhammad Zubair
    Swedish University of Agricultural Sciences, Department of Plant Breeding and Biotechnology Balsgård, Fjälkestadsvägen 459, SE-291 94 Kristianstad, Sweden.
  • Amanullah Yasin
    Department of Creative Technologies, Faculty of Computing and Artificial Intelligence, Air University, Islamabad 44000, Pakistan.
  • Muhammad Owais
    Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.
  • Irfan Hussain