A cascade nanoreactor based on metal azolate framework integrated natural enzyme for α-glucosidase activity assay and inhibitor screening.

Journal: Journal of colloid and interface science
Published Date:

Abstract

Enzyme cascades have attracted widespread attention owing to the exceptional specificity and efficient signals transduction, however, constrained by the high cost and limited stability of bio-enzymes. In this study, a novel mimic multienzyme nanoreactor (GOx@MAF-7(Fe), i.e. GMF) was developed through a one-step encapsulation of glucose oxidase (GOx) into a metal azolate framework, MAF-7(Fe). Benefiting from the synergistic effect of GOx and the exceptional peroxidase-like (POD) activity of MAF-7(Fe), GMF enabled a robust cascade catalytic reaction for colorimetric sensing. The unique structural and functional properties of MAF-7(Fe) not only facilitated efficient enzyme immobilization but also enhanced the stability of GOx, outperforming free enzymes in terms of storage and thermal tolerance. The GMF-based platform demonstrated high sensitivity and selectivity in glucose response. More importantly, by integrating α-glucosidase (α-Glu) into a three-enzyme cascade system, a colorimetric assay was successfully developed for α-Glu activity with a detection limit of 0.25 mU/mL, surpassing most existing methods. This platform was further applied for α-Glu inhibitor screening, with acarbose as a model inhibitor, and achieved precise quantification of inhibition efficiency (IC = 60.06 nM). This work not only establishes a versatile and efficient sensing platform for diabetes-related biomolecule detection but also pioneers a novel strategy for enzyme immobilization and multienzyme cascade construction, opening new avenues for multifunctional material design in biomedical research.

Authors

  • Yu Wang
    Clinical and Technical Support, Philips Healthcare, Shanghai, China.
  • Qilin Zhao
    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Qi Fang
    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Jian Sun
    Department Of Computer Science, University of Denver, 2155 E Wesley Ave, Denver, Colorado, 80210, United States of America.
  • Yan Du
    State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China. Electronic address: duyan@ciac.ac.cn.
  • Haji Akber Aisa
    Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China. haji@ms.xjb.ac.cn.

Keywords

No keywords available for this article.