Machine learning in wastewater: opportunities and challenges - "not everything is a nail!".

Journal: Current opinion in biotechnology
Published Date:

Abstract

This paper highlights the potential of machine learning (ML) for wastewater applications, with a focus on key applications and considerations. It underscores the need for simplicity in ML models to ensure their interpretability and trustworthiness, cautioning against the use of overly complex 'black box' models unless absolutely necessary, especially with limited data. Not all modelling problems should be considered nails for which the ML hammer is the best-available tool. We emphasise the critical role of thorough data collection, including metadata, given its scarcity in some areas. Future research is encouraged to develop benchmark hybrid models to bridge the educational gap for environmental engineers and to establish best practices for managing data and model metadata, thereby improving ML's accessibility and utility in wastewater applications.

Authors

  • Peter A Vanrolleghem
    modelEAU, Université Laval, 1065, Avenue de la Médecine, Québec, QC G1 V 0A6, Canada E-mail: feiyi.li.1@ulaval.ca; CentrEau, Québec Water Research Center, 1065 avenue de la Médecine, Québec, QC G1 V 0A6, Canada.
  • Mostafa Khalil
    modelEAU - Université Laval, Département de génie civil et de génie des eaux, Avenue de la Médecine, Québec, QC G1V 0A6, Canada; Department of Civil and Environmental Engineering, University of Alberta, AB T6G 1H9, Canada.
  • Marcello Serrao
    modelEAU - Université Laval, Département de génie civil et de génie des eaux, Avenue de la Médecine, Québec, QC G1V 0A6, Canada; SUEZ International, Innovation & Technical Office, 16 place de l'Iris, F-92040 Paris La Défense, France.
  • Jeff Sparks
    modelEAU - Université Laval, Département de génie civil et de génie des eaux, Avenue de la Médecine, Québec, QC G1V 0A6, Canada; Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, USA.
  • Jean-David Therrien
    modelEAU - Université Laval, Département de génie civil et de génie des eaux, Avenue de la Médecine, Québec, QC G1V 0A6, Canada.