Machine Learning Model for Predicting Mortality Risk in Patients With Complex Chronic Conditions: Retrospective Analysis.

Journal: Online journal of public health informatics
Published Date:

Abstract

BACKGROUND: The health care system is undergoing a shift toward a more patient-centered approach for individuals with chronic and complex conditions, which presents a series of challenges, such as predicting hospital needs and optimizing resources. At the same time, the exponential increase in health data availability has made it possible to apply advanced statistics and artificial intelligence techniques to develop decision-support systems and improve resource planning, diagnosis, and patient screening. These methods are key to automating the analysis of large volumes of medical data and reducing professional workloads.

Authors

  • Guillem Hernández Guillamet
    Research Group on Innovation, Health Economics and Digital Transformation Institut Germans Trias i Pujol Badalona Spain.
  • Ariadna Ning Morancho Pallaruelo
    Hospital Germans Trias i Pujol Institut Català de la Salut Badalona Spain.
  • Laura Miró Mezquita
    Research Group on Innovation, Health Economics and Digital Transformation Institut Germans Trias i Pujol Badalona Spain.
  • Ramón Miralles
    Direcció Clínica Territorial de Cronicitat Metropolitana Nord Institut Català de la Salut Badalona Spain.
  • Miquel Àngel Mas
    Direcció Clínica Territorial de Cronicitat Metropolitana Nord Institut Català de la Salut Badalona Spain.
  • María José Ulldemolins Papaseit
    Direcció d'Atenció Primària Metropolitana Nord Institut Català de la Salut Badalona Spain.
  • Oriol Estrada Cuxart
    Research Group on Innovation, Health Economics and Digital Transformation Institut Germans Trias i Pujol Badalona Spain.
  • Francesc López Seguí
    Hospital Germans Trias i Pujol Institut Català de la Salut Badalona Spain.

Keywords

No keywords available for this article.