AI-Driven Advances in Parkinson's Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes.
Journal:
Brain sciences
Published Date:
May 9, 2025
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by motor and non-motor dysfunctions that severely compromise patients' quality of life. While pharmacological treatments provide symptomatic relief in the early stages, advanced PD often requires neurosurgical interventions, such as deep brain stimulation (DBS) and focused ultrasound (FUS), for effective symptom management. A significant challenge in optimizing these therapeutic strategies is the early identification and recruitment of suitable candidates for clinical trials. This review explores the role of artificial intelligence (AI) in advancing neurosurgical and neuroscience interventions for PD, highlighting the ways in which AI-driven platforms are transforming clinical trial design and patient selection. Machine learning (ML) algorithms and big data analytics enable precise patient stratification, risk assessment, and outcome prediction, accelerating the development of novel therapeutic approaches. These innovations improve trial efficiency, broaden treatment options, and enhance patient outcomes. However, integrating AI into clinical trial frameworks presents challenges such as data standardization, regulatory hurdles, and the need for extensive validation. Addressing these obstacles will require collaboration among neurosurgeons, neuroscientists, AI specialists, and regulatory bodies to establish ethical and effective guidelines for AI-driven technologies in PD neurosurgical research. This paper emphasizes the transformative potential of AI and technological innovation in shaping the future of PD neurosurgery, ultimately enhancing therapeutic efficacy and patient care.
Authors
Keywords
No keywords available for this article.