One-pot synthesized multifunctional Zn-MOF/HOF heterostructure sensor array assisted by machine learning for efficient capture, target discrimination and optosmart sensing of doxycycline analogs.

Journal: Journal of hazardous materials
Published Date:

Abstract

The ideal multifunctional platform that combines the capabilities of effective capture, sensitive detection, and accurate identification of doxycycline analogs (DCs) remains a serious challenge for ensuring the environment and food security. This work constructs heterostructure Zn-MOF/HOF asynchronous response fluorescence sensor using a multicomponent one-pot method for high-efficiency capturing and sensitive detecting DCs. Metal nodes and functional groups in Zn-MOF/HOF provide sites for specifically recognizing and sensitizing DCs that induce asynchronous response with blue/green fluorescence emission. Fluorescence spectra of Zn-MOF/HOF show characteristic differences due to different spatial conformations and substituents of DCs. Machine learning-assisted Zn-MOF/HOF fluorescent sensing array accurately discriminates DCs with a high precision of 100 %. An exceptional adsorption capacity of DCs up to 569.00 mg/g realizes the effective pre-enrichment of DCs, improving the sensitivity of the Zn-MOF/HOF sensor. The limits of detection of the Zn-MOF/HOF sensor are as ultra-low as 2.2 nmol/L. Satisfactory recoveries of 91.78 %-113.16 % are obtained for detecting DCs in real-world water and food samples. A portable optosmart sensing system integrating the Zn-MOF/HOF sensor and smartphone realizes visual quantitation and on-site monitoring DCs. This work innovatively reveals the great potential of Zn-MOF/HOF heterostructure as a multifunctional platform for simultaneous capture, identification, and sensing of emerging contaminants.

Authors

  • Yixin Ji
    College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China.
  • Liuxin Xue
    College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
  • Guanqun Luan
    College of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China.
  • Chunhua Li
    School of Computer Science and Technology, Soochow University, Suzhou 215006, China.

Keywords

No keywords available for this article.