Application of Metaheuristics for Optimizing Predictive Models in iHealth: A Case Study on Hypotension Prediction in Dialysis Patients.

Journal: Biomimetics (Basel, Switzerland)
Published Date:

Abstract

Intradialytic hypotension (IDH) is a critical complication in patients with chronic kidney disease undergoing dialysis, affecting both patient safety and treatment efficacy. This study examines the application of advanced machine learning techniques, combined with metaheuristic optimization methods, to improve predictive models for intradialytic hypotension (IDH) in hemodialysis patients. Given the critical nature of IDH, which can lead to significant complications during dialysis, the development of effective predictive tools is vital for improving patient safety and outcomes. Dialysis session data from 758 patients collected between January 2016 and October 2019 were analyzed. Particle Swarm Optimization, Grey Wolf Optimizer, Pendulum Search Algorithm, and Whale Optimization Algorithm were employed to reduce the feature space, removing approximately 45% of clinical and analytical variables while maintaining high recall for the minority class of patients experiencing hypotension. Among the evaluated models, the XGBoost classifier showed superior performance, achieving a macro F-score of 0.745 with a recall of 0.756 and a precision of 0.718. These results highlight the effectiveness of the combined approach for early identification of patients at risk for IDH, minimizing false negatives, and improving clinical decision-making in nephrology.

Authors

  • Felipe Cisternas-Caneo
    Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile.
  • María Santamera-Lastras
    Department of Medicine and Medical Specialties, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain.
  • José Barrera-García
    Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile.
  • Broderick Crawford
    Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile.
  • Ricardo Soto
    Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile.
  • Cristóbal Brante-Aguilera
    Escuela de Ingeniería en Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile.
  • Alberto Garcés-Jiménez
    Health Computing and Intelligent Systems Research Group (HCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain.
  • Diego Rodriguez-Puyol
    Department of Medicine and Medical Specialties, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain.
  • José Manuel Gómez-Pulido
    Health Computing and Intelligent Systems Research Group (HCIS), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain.

Keywords

No keywords available for this article.