RNA knowledge-graph analysis through homogeneous embedding methods.

Journal: Bioinformatics advances
Published Date:

Abstract

MOTIVATION: We recently introduced RNA-knowledge graph (KG), an ontology-based KG that integrates biological data on RNAs from over 60 public databases. RNA-KG captures functional relationships and interactions between RNA molecules and other biomolecules, chemicals, and biomedical concepts such as diseases and phenotypes, all represented within graph-structured bio-ontologies. We present the first comprehensive computational analysis of RNA-KG, evaluating the potential of graph representation learning and machine learning models to predict node types and edges within the graph.

Authors

  • Francesco Torgano
    AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Milan 20133, Italy.
  • Mauricio Soto Gomez
    AnacletoLab, Dipartimento di Informatica, Università degli Studi di Milano, Milan 20133, Italy.
  • Matteo Zignani
    Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  • Jessica Gliozzo
    AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.
  • Emanuele Cavalleri
    AnacletoLab, Dipartimento di Informatica, Universit`a degli Studi di Milano, Via Celoria 18, 20133, Milan, Italy.
  • Marco Mesiti
    AnacletoLab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, 20133, Italy.
  • Elena Casiraghi
    Department of Computer Science "Giovanni degli Antoni,"Università degli Studi di Milano 20133 Milan Italy.
  • Giorgio Valentini
    Department of Computer Science "Giovanni degli Antoni,"Università degli Studi di Milano 20133 Milan Italy.

Keywords

No keywords available for this article.