Development and validation of a deep learning model for diagnosing neuropathic corneal pain via in vivo confocal microscopy.
Journal:
NPJ digital medicine
Published Date:
May 14, 2025
Abstract
Neuropathic corneal pain (NCP) is an underdiagnosed ocular disorder caused by aberrant nociception and hypersensitivity of corneal nerves, often resulting in chronic pain and discomfort even in the absence of noxious stimuli. Recently, microneuromas (aberrant growth and swelling of the corneal nerve endings) detected using in vivo confocal microscopy (IVCM) have emerged as a promising biomarker for NCP. However, this process is time-intensive and error-prone, limiting its clinical use and availability. In this work, we present a new NCP screening system based on a deep learning model trained to detect microneuromas using a multisite dataset with a combined total of 103,168 IVCM images. Our model showed excellent discriminative ability detecting microneuromas (AuROC: 0.97) and the ability to generalize to data from a new institution (AuROC: 0.90). Additionally, our pipeline provides an uncertainty quantification mechanism that allows it to communicate when its predictions are reliable, further increasing its clinical relevance.
Authors
Keywords
No keywords available for this article.