Dual-Domain deep prior guided sparse-view CT reconstruction with multi-scale fusion attention.
Journal:
Scientific reports
Published Date:
May 15, 2025
Abstract
Sparse-view CT reconstruction is a challenging ill-posed inverse problem, where insufficient projection data leads to degraded image quality with increased noise and artifacts. Recent deep learning approaches have shown promising results in CT reconstruction. However, existing methods often neglect projection data constraints and rely heavily on convolutional neural networks, resulting in limited feature extraction capabilities and inadequate adaptability. To address these limitations, we propose a Dual-domain deep Prior-guided Multi-scale fusion Attention (DPMA) model for sparse-view CT reconstruction, aiming to enhance reconstruction accuracy while ensuring data consistency and stability. First, we establish a residual regularization strategy that applies constraints on the difference between the prior image and target image, effectively integrating deep learning-based priors with model-based optimization. Second, we develop a multi-scale fusion attention mechanism that employs parallel pathways to simultaneously model global context, regional dependencies, and local details in a unified framework. Third, we incorporate a physics-informed consistency module based on range-null space decomposition to ensure adherence to projection data constraints. Experimental results demonstrate that DPMA achieves improved reconstruction quality compared to existing approaches, particularly in noise suppression, artifact reduction, and fine detail preservation.
Authors
Keywords
No keywords available for this article.