Clinical Validation and Post-Implementation Performance Monitoring of a Neural Network-Assisted Approach for Detecting Chronic Lymphocytic Leukemia Minimal Residual Disease by Flow Cytometry.
Journal:
Cancers
Published Date:
May 17, 2025
Abstract
: Flow cytometric detection of minimal residual disease (MRD) in chronic lymphocytic leukemia (CLL) is complex, time-consuming, and subject to inter-operator variability. Deep neural networks (DNNs) offer potential for standardization and efficiency improvement, but require rigorous validation and monitoring for safe clinical implementation. : We evaluated a DNN-assisted human-in-the-loop approach for CLL MRD detection. Initial validation included method comparison against manual analysis (n = 240), precision studies, and analytical sensitivity verification. Post-implementation monitoring comprised four components: daily electronic quality control, input data drift detection, error analysis, and attribute acceptance sampling. Laboratory efficiency was assessed through a timing study of 161 cases analyzed by five technologists. : Method comparison demonstrated 97.5% concordance with manual analysis for qualitative classification (sensitivity 100%, specificity 95%) and excellent correlation for quantitative assessment (r = 0.99, Deming slope = 0.99). Precision studies confirmed high repeatability and within-laboratory precision across multiple operators. Analytical sensitivity was verified at 0.002% MRD. Post-implementation monitoring identified 2.97% of cases (26/874) with input data drift, primarily high-burden CLL and non-CLL neoplasms. Error analysis showed the DNN alone achieved 97% sensitivity compared to human-in-the-loop-reviewed results, with 13 missed cases (1.5%) showing atypical immunophenotypes. Attribute acceptance sampling confirmed 98.8% of reported negative cases were true negatives. The DNN-assisted workflow reduced average analysis time by 60.3% compared to manual analysis (4.2 ± 2.3 vs. 10.5 ± 5.8 min). : The implementation of a DNN-assisted approach for CLL MRD detection in a clinical laboratory provides diagnostic performance equivalent to expert manual analysis while substantially reducing analysis time. Comprehensive performance monitoring ensures ongoing safety and effectiveness in routine clinical practice. This approach provides a model for responsible AI integration in clinical laboratories, balancing automation benefits with expert oversight.
Authors
Keywords
No keywords available for this article.