RP-DETR: end-to-end rice pests detection using a transformer.
Journal:
Plant methods
Published Date:
May 17, 2025
Abstract
Pest infestations in rice crops greatly affect yield and quality, making early detection essential. As most rice pests affect leaves and rhizomes, visual inspection of rice for pests is becoming increasingly important. In precision agriculture, fast and accurate automatic pest identification is essential. To tackle this issue, multiple models utilizing computer vision and deep learning have been applied. Owing to its high efficiency, deep learning is now the favored approach for detecting plant pests. In this regard, the paper introduces an effective rice pest detection framework utilizing the Transformer architecture, designed to capture long-range features. The paper enhances the original model by adding the self-developed RepPConv-block to reduce the problem of information redundancy in feature extraction in the model backbone and to a certain extent reduce the model parameters. The original model's CCFM structure is enhanced by integrating the Gold-YOLO neck, improving its ability to fuse multi-scale features. Additionally, the MPDIoU-based loss function enhances the model's detection performance. Using the self-constructed high-quality rice pest dataset, the model achieves higher identification accuracy while reducing the number of parameters. The proposed RP18-DETR and RP34-DETR models reduce parameters by 16.5% and 25.8%, respectively, compared to the original RT18-DETR and RT34-DETR models. With a threshold of 0.5, the average accuracy calculated is 1.2% higher for RP18-DETR than for RT18-DETR.
Authors
Keywords
No keywords available for this article.