NeuroDetect: Deep Learning-Based Signal Detection in Phase-Modulated Systems with Low-Resolution Quantization.
Journal:
Sensors (Basel, Switzerland)
Published Date:
May 19, 2025
Abstract
This manuscript introduces NeuroDetect, a model-free deep learning-based signal detection framework tailored for phase-modulated wireless systems with low-resolution analog-to-digital converters (ADCs). The proposed framework eliminates the need for explicit channel state information, which is typically difficult to acquire under coarse quantization. NeuroDetect utilizes a neural network architecture to learn the nonlinear relationship between quantized received signals and transmitted symbols directly from data. It achieves near-optimum performance, within a worst-case 12% margin of the maximum likelihood detector that assumes perfect channel knowledge. We rigorously investigate the interplay between ADC resolution and detection accuracy, introducing novel penalty metrics that quantify the effects of both quantization and learning errors. Our results shed light on the design trade-offs between ADC resolution and detection accuracy, providing future directions for developing energy-efficient high-speed and wideband wireless systems.
Authors
Keywords
No keywords available for this article.