"ShapeNet": A Shape Regression Convolutional Neural Network Ensemble Applied to the Segmentation of the Left Ventricle in Echocardiography.

Journal: Journal of imaging
Published Date:

Abstract

Left ventricle (LV) segmentation is crucial for cardiac diagnosis but remains challenging in echocardiography. We present ShapeNet, a fully automatic method combining a convolutional neural network (CNN) ensemble with an improved active shape model (ASM). ShapeNet predicts optimal pose (rotation, translation, and scale) and shape parameters, which are refined using the improved ASM. The ASM optimizes an objective function constructed from gray-level profiles concatenated into a single contour appearance vector. The model was trained on 4800 augmented CAMUS images and tested on both CAMUS and EchoNet databases. It achieved a Dice coefficient of 0.87 and a Hausdorff Distance (HD) of 4.08 pixels on CAMUS, and a Dice coefficient of 0.81 with an HD of 10.21 pixels on EchoNet, demonstrating robust performance across datasets. These results highlight the improved accuracy in HD compared to previous semantic and shape-based segmentation methods by generating statistically valid LV contours from ultrasound images.

Authors

  • Eduardo Galicia Gómez
    Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
  • Fabián Torres-Robles
    Laboratorio de Física Médica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
  • Jorge Perez-Gonzalez
  • Fernando Arámbula Cosío
    Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, México D.F, C.P. 04510, Mexico.

Keywords

No keywords available for this article.