A rapid accurate approach to inferring pedigrees in endogamous populations.
Journal:
Genetics
Published Date:
May 20, 2025
Abstract
Accurate reconstruction of pedigrees from genetic data remains a challenging problem. Many relationship categories (e.g. half-sibships versus avuncular) can be difficult to distinguish without external information. Pedigree inference algorithms are often trained on European-descent families in urban locations. Thus, existing methods tend to perform poorly in endogamous populations for which there may be reticulations within the pedigrees and elevated haplotype sharing. We present a simple, rapid algorithm which initially uses only high-confidence first-degree relationships to seed a machine learning step based on summary statistics of identity-by-descent (IBD) sharing. One of these statistics, our ``haplotype score'', is novel and can be used to: (1) distinguish half-sibling pairs from avuncular or grandparent-grandchildren pairs; and (2) assign individuals to ancestor versus descendant generation. We test our approach in a sample of ∼700 individuals from northern Namibia, sampled from an endogamous population called the Himba. Due to a culture of concurrent relationships in the Himba, there is a high proportion of half-sibships. We accurately identify first through fourth-degree relationships and distinguish between various second-degree relationships: half-sibships, avuncular pairs, and grandparent-grandchildren. We further validate our approach in a second African-descent dataset, the Barbados Asthma Genetics Study (BAGS), and a European-descent founder population from Quebec. Accurate reconstruction of relatives facilitates estimation of allele frequencies, tracing allele trajectories, improved phasing, heritability and other population genomic questions.
Authors
Keywords
No keywords available for this article.