Baseline Radiomics as a Prognostic Tool for Clinical Benefit from Immune Checkpoint Inhibition in Inoperable NSCLC Without Activating Mutations.
Journal:
Cancers
Published Date:
May 27, 2025
Abstract
Checkpoint inhibitors (ICIs) are key therapies for NSCLC, but current selection criteria, such as excluding mutation carriers and assessing PD-L1, lack sensitivity. As a result, many patients receive costly treatments with limited benefit. Therefore, this study aimed to predict which NSCLC patients would achieve durable survival (≥24 months) with immunotherapy. A comprehensive ensemble radiomics approach was applied to pretreatment CT scans to prognosticate overall survival (OS) and predict progression-free survival (PFS) in a cohort of 220 consecutive patients with inoperable NSCLC treated with first-line ICIs (pembrolizumab or atezolizumab, nivolumab or prolgolimab) as monotherapy or in combination. The radiomics pipeline evaluated four normalization methods (none, min-max, Z-score, mean), four feature selection techniques (ANOVA, RFE, Kruskal-Wallis, Relief), and ten classifiers (e.g., SVM, random forest). Using two to eight radiomics features, 1680 models were built in the Feature Explorer (FAE) Python package. Three feature sets were evaluated: clinicopathological (CP) only, radiomics only, and a combined set, using 6- and 12-month PFS and 24-month OS endpoints. The top 15 models were ensembled by averaging their probability scores. The best performance was achieved at 24-month OS with the combined CP and radiomics ensemble (AUC = 0.863, accuracy = 85%), followed by radiomics-only (AUC = 0.796, accuracy = 82%) and CP-only (AUC = 0.671, accuracy = 76%). Predictive performance was lower for 6-month (AUC = 0.719) and 12-month PFS (AUC = 0.739) endpoints. Our radiomics pipeline improved selection of NSCLC patients for immunotherapy and could spare non-responders unnecessary toxicity while enhancing cost-effectiveness.
Authors
Keywords
No keywords available for this article.