Predicting Early Outcomes of Prostatic Artery Embolization Using -Butyl Cyanoacrylate Liquid Embolic Agent: A Machine Learning Study.
Journal:
Diagnostics (Basel, Switzerland)
Published Date:
May 28, 2025
Abstract
: Prostatic artery embolization (PAE) has been increasingly recognized, especially with recent progress in embolization techniques for the management of lower urinary tract symptoms due to benign prostatic hyperplasia. Nevertheless, a proportion of patients undergoing PAE fail to demonstrate clinical improvement. Machine learning models have the potential to provide valuable prognostic insights for patients undergoing PAE. : A retrospective cohort study was performed utilizing a modified prior-data fitted network architecture to predict short-term (7 weeks) favorable outcomes, defined as a reduction greater than 9 points in the International Prostate Symptom Score (IPSS), in patients who underwent PAE with BCA glue. Patients were stratified into two groups based on the median IPSS reduction value, and a binary classification model was developed to predict the outcome of interest. The model was developed using clinical tabular data, including both pre-procedural and intra-procedural variables. SHapley Additive ExPlanations (SHAP) were used to uncover the relative importance of features. : The final cohort included 109 patients. The model achieved an accuracy of 0.676, an MCC of 0.363, a precision of 0.666, a recall of 0.856, an F1-score of 0.731, and a Brier score of 0.203, with an AUPRC of 0.851 and an AUROC of 0.821. SHAP analysis identified pre-PAE IPSS, prior therapy, right embolization volume, preoperative quality of life, and age as the top five most influential features. : Our model showed promising discrimination and calibration in predicting early outcomes of PAE with BCA glue, highlighting the potential of precision medicine to deliver interpretable, individualized risk assessments.
Authors
Keywords
No keywords available for this article.