Neuron-Inspired Ferroelectric Bioelectronics for Adaptive Biointerfacing.
Journal:
Advanced materials (Deerfield Beach, Fla.)
Published Date:
May 29, 2025
Abstract
Implantable bioelectronics, which are essential to neuroscience studies, neurological disorder treatment, and brain-machine interfaces, have become indispensable communication bridges between biological systems and the external world through sensing, monitoring, or manipulating bioelectrical signals. However, conventional implantable bioelectronic devices face key challenges in adaptive interfacing with neural tissues due to their lack of neuron-preferred properties and neuron-similar behaviors. Here, innovative neuron-inspired ferroelectric bioelectronics (FerroE) are reported that consists of biocompatible polydopamine-modified barium titanate nanoparticles, ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer, and cellular-scale micropyramid array structures, imparting adaptive interfacing with neural systems. These FerroE not only achieve neuron-preferred flexible and topographical properties, but also offer neuron-similar behaviors including highly efficient and stable light-induced polarization change, superior capability of producing electric signals, and seamless integration and adaptive communication with neurons. Moreover, the FerroE allows for adaptive interfacing with both peripheral and central neural networks of mice, enabling regulation of their heart rate and motion behavior in a wireless, non-genetic, and non-contact manner. Notably, the FerroE demonstrates unprecedented structural and functional stability and negligible immune response even after 3 months of implantation in vivo. Such bioinspired FerroE are opening new opportunities for next-generation brain-machine interfaces, tissue engineering materials, and biomedical devices.
Authors
Keywords
No keywords available for this article.