Artificial Intelligence model to predict resistances in Gram-negative bloodstream infections.
Journal:
NPJ digital medicine
Published Date:
May 29, 2025
Abstract
Artificial intelligence (AI) models are promising tools for predicting antimicrobial susceptibility in gram-negative bloodstream infections (GN-BSI). Single-center study on hospitalized patients with GN-BSI, over 7-year period, aimed to predict resistance to fluoroquinolones (FQ-R), third generation cephalosporins (3GC-R), beta-lactam/beta-lactamase inhibitors (BL/BLI-R) and carbapenems (C-R) was performed. Analyses were carried out within a machine learning framework, developed using the scikit-learn Python package. Overall, 2552 patients were included. Enterobacterales accounted for 85.5% of isolates, with E. coli, Klebsiella spp, and Proteus spp being most common. Distribution of resistance was FQ-R 48.6%, 3GC-R 40.1%, BL/BLI-R 29.9%, and C-R 16.9%. Models' validation showed good performance predicting antibiotic resistance for all four resistance classes, with the best performance for C-R (AUC-ROC 0.921 ± 0.013). The developed pipeline has been made available ( https://github.com/EttoreRocchi/ResPredAI ), along with documentation for running the same workflow on a different dataset, to account for local epidemiology and clinical features.
Authors
Keywords
No keywords available for this article.