Mechanical Modulation, Physiological Roles, and Imaging Innovations of Intercellular Calcium Waves in Living Systems.
Journal:
Cancers
Published Date:
May 31, 2025
Abstract
Long-range intercellular communication is essential for multicellular biological systems to regulate multiscale cell-cell interactions and maintain life. Growing evidence suggests that intercellular calcium waves (ICWs) act as a class of long-range signals that influence a broad spectrum of cellular functions and behaviors. Importantly, mechanical signals, ranging from single-molecule-scale to tissue-scale in vivo, can initiate and modulate ICWs in addition to relatively well-appreciated biochemical and bioelectrical signals. Despite these recent conceptual and experimental advances, the full nature of underpinning mechanotransduction mechanisms by which cells convert mechanical signals into ICW dynamics remains poorly understood. This review provides a systematic analysis of quantitative ICW dynamics around three main stages: initiation, propagation, and regeneration/relay. We highlight the landscape of upstream molecules and organelles that sense and respond to mechanical stimuli, including mechanosensitive membrane proteins and cytoskeletal machinery. We clarify the roles of downstream molecular networks that mediate signal release, spread, and amplification, including adenosine triphosphate (ATP) release, purinergic receptor activation, and gap junction (GJ) communication. Furthermore, we discuss the broad pathophysiological implications of ICWs, covering pathophysiological processes such as cancer metastasis, tissue repair, and developmental patterning. Finally, we summarize recent advances in optical imaging and artificial intelligence (AI)/machine learning (ML) technologies that reveal the precise spatial-temporal-functional dynamics of ICWs and ATP waves. By synthesizing these insights, we offer a comprehensive framework of ICW mechanobiology and propose new directions for mechano-therapeutic strategies in disease diagnosis, cancer immunotherapies, and drug discovery.
Authors
Keywords
No keywords available for this article.