Specialized Large Language Model Outperforms Neurologists at Complex Diagnosis in Blinded Case-Based Evaluation.
Journal:
Brain sciences
Published Date:
Mar 27, 2025
Abstract
: Artificial intelligence (AI), particularly large language models (LLMs), has demonstrated versatility in various applications but faces challenges in specialized domains like neurology. This study evaluates a specialized LLM's capability and trustworthiness in complex neurological diagnosis, comparing its performance to neurologists in simulated clinical settings. : We deployed GPT-4 Turbo (OpenAI, San Francisco, CA, US) through Neura (Sciense, New York, NY, US), an AI infrastructure with a dual-database architecture integrating "long-term memory" and "short-term memory" components on a curated neurological corpus. Five representative clinical scenarios were presented to 13 neurologists and the AI system. Participants formulated differential diagnoses based on initial presentations, followed by definitive diagnoses after receiving conclusive clinical information. Two senior academic neurologists blindly evaluated all responses, while an independent investigator assessed the verifiability of AI-generated information. : AI achieved a significantly higher normalized score (86.17%) compared to neurologists (55.11%, < 0.001). For differential diagnosis questions, AI scored 85% versus 46.15% for neurologists, and for final diagnosis, 88.24% versus 70.93%. AI obtained 15 maximum scores in its 20 evaluations and responded in under 30 s compared to neurologists' average of 9 min. All AI-provided references were classified as relevant with no hallucinatory content detected. : A specialized LLM demonstrated superior diagnostic performance compared to practicing neurologists across complex clinical challenges. This indicates that appropriately harnessed LLMs with curated knowledge bases can achieve domain-specific relevance in complex clinical disciplines, suggesting potential for AI as a time-efficient asset in clinical practice.
Authors
Keywords
No keywords available for this article.