Dual-energy CT-based virtual monoenergetic imaging via unsupervised learning.

Journal: Physical and engineering sciences in medicine
Published Date:

Abstract

Since its development, virtual monoenergetic imaging (VMI) derived from dual-energy computed tomography (DECT) has been shown to be valuable in many clinical applications. However, DECT-based VMI showed increased noise at low keV levels. In this study, we proposed an unsupervised learning method to generate VMI from DECT. This means that we don't require training and labeled (i.e. high-quality VMI) data. Specifically, DECT images were fed into a deep learning (DL) based model expected to output VMI. Based on the theory that VMI obtained from image space data is a linear combination of DECT images, we used the model output (i.e. the predicted VMI) to recalculate DECT images. By minimizing the difference between the measured and recalculated DECT images, the DL-based model can be constrained itself to generate VMI from DECT images. We investigate whether the proposed DL-based method has the ability to improve the quality of VMIs. The experimental results obtained from patient data showed that the DL-based VMIs had better image quality than the conventional DECT-based VMIs. Moreover, the CT number differences between the DECT-based and DL-based VMIs were distributed within 10 HU for bone and 5 HU for brain, fat, and muscle. Except for bone, no statistically significant difference in CT number measurements was found between the DECT-based and DL-based VMIs (p > 0.01). Our preliminary results show that DL has the potential to unsupervisedly generate high-quality VMIs directly from DECT.

Authors

  • Chi-Kuang Liu
    Department of Medical Imaging, Changhua Christian Hospital, 135 Nanxiao St, 500, Changhua County, Taiwan.
  • Hui-Yu Chang
    Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd., Zhongzheng Dist., Taipei City, 100, Taiwan.
  • Hsuan-Ming Huang

Keywords

No keywords available for this article.