Manually classified dataset of leaning and standing personnel images for construction site monitoring and neural network training.

Journal: Data in brief
Published Date:

Abstract

This data paper presents a manually labeled dataset of 1,214 images of personnel captured from a construction site using four static cameras. There are two classes, standing and people leaning. The classification is stored in accompanying text files and bounding box coordinates for every image. The compilation was done to support the developing and validation computer vision and AI models for construction site monitoring. This dataset addresses the challenges of finding personnel in different poses within complex construction environments. The resource will enhance construction site safety monitoring and personnel activity analysis by allowing more precise neural network training. The dataset is stored in a public repository, making it openly accessible for academic and industrial purposes regarding computer vision, civil engineering, and workplace safety.

Authors

  • Alexandre Almeida Del Savio
    Carrera de Ingeniería Civil, Instituto de Investigación Científica, Universidad de Lima, Lima, Peru.
  • Ana Luna Torres
    Carrera de Ingeniería Civil, Instituto de Investigación Científica, Universidad de Lima, Lima, Peru.
  • Daniel Cárdenas-Salas
    Technology Innovation Program, Carleton University, Ottawa, Canada.
  • Mónica Vergara Olivera
    Carrera de Ingeniería Civil, Instituto de Investigación Científica, Universidad de Lima, Lima, Peru.
  • Gianella Urday Ibarra
    Carrera de Ingeniería Civil, Instituto de Investigación Científica, Universidad de Lima, Lima, Peru.

Keywords

No keywords available for this article.