Optical Synaptic Devices with Multiple Encryption Features Based on SERS-Revealed Charge-Transfer Mechanism.

Journal: Advanced materials (Deerfield Beach, Fla.)
Published Date:

Abstract

2D optical synaptic devices with atomic-scale thickness show potential for building highly integrated tunable artificial visual neural networks. However, their atomic-scale thickness also leads to weak light absorption, limiting device photoresponse. Here, a high-performance optical synaptic device based on a Rhodamine 6G (R6G)/InSe hybrid structure is proposed, achieving a remarkable 328.9% enhancement in photoresponse compared to InSe devices. Using surface-enhanced Raman spectroscopy (SERS) as a nondestructive probing technique, it is demonstrated that light-induced charge transfer between R6G and InSe is the key mechanism enabling the device's high performance. Furthermore, introducing a self-limited oxide layer on the InSe surface provides additional evidence for the charge transfer process. This charge-transfer-based device effectively mimics the neurotransmitter transmission process in biological synapses, showing unique potential in applications such as image preprocessing and decoding within artificial neural networks. In addition, through surface treatment techniques, precise control over the charge transfer process is achieved, enabling the design of a multiple encryption-based anti-counterfeiting array and highlighting their value in on-chip anti-counterfeiting. By employing a spectrally noninvasive method to probe charge transfer, this study elucidates the critical role of charge transfer in optical synaptic devices and opens novel application pathways.

Authors

  • Shaoguang Zhao
    Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China.
  • Xiangyu Hou
    Department of Nephrology, Shandong Institute of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, Shandong 250014, China.
  • Yue Cheng
  • Qiman Zhang
    Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, and Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing, 100081, China.
  • Jingwen Zhao
    School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China.
  • Li Tao
    Molecular Imaging Instrumentation Laboratory, Stanford University, Stanford, United States of America.

Keywords

No keywords available for this article.