Left ventricular systolic dysfunction screening in muscular dystrophies using deep learning-based electrocardiogram interpretation.

Journal: Journal of electrocardiology
Published Date:

Abstract

BACKGROUND: Routine echocardiographic monitoring is recommended in muscular dystrophy patients to detect left ventricular systolic dysfunction (LVSD) but is often challenging due to physical limitations. This study evaluates whether artificial intelligence-based electrocardiogram interpretation (AI-ECG) can detect and predict LVSD in muscular dystrophy patients.

Authors

  • Bauke K O Arends
    Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Peter-Paul M Zwetsloot
    Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
  • Pauline S Heeres
    Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
  • Wouter A C van Amsterdam
    Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
  • Maarten J Cramer
    Department of Cardiology, University Medical Center Utrecht, the Netherlands (R.R.v.d.L., K.T., M.N.B., J.F.v.d.H., M.J.C., R.J.H., P.v.d.H., P.A.D., F.W.A., R.v.E.).
  • Esther T Kruitwagen-van Reenen
    Department of Rehabilitation, University Medical Center Utrecht, Utrecht, the Netherlands.
  • Pim van der Harst
    Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.
  • Dirk van Osch
    Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • RenĂ© van Es
    Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands.

Keywords

No keywords available for this article.