Attention-driven UNet enhancement for accurate segmentation of bacterial spore outgrowth in microscopy images.
Journal:
Scientific reports
Published Date:
Jun 20, 2025
Abstract
Analyzing microscopy images of large growing cell samples using traditional methods is a complex and time-consuming process. In this work, we have developed an attention-driven UNet-enhanced model using deep learning techniques to efficiently quantify the position, area, and circularity of bacterial spores and vegetative cells from images containing more than 10,000 bacterial cells. Our attention-driven UNet algorithm has an accuracy of 96%, precision of 82%, sensitivity of 81%, and specificity of 98%. Therefore, it can segment cells at a level comparable to manual annotation. We demonstrate the efficacy of this model by applying it to a live-dead decontamination assay. The model is provided in three formats: Python code, a Binder that operates within a web browser without needing installation, and a Flask Web application for local use.
Authors
Keywords
No keywords available for this article.