Leveraging transformers for semi-supervised pathogenicity prediction with soft labels.
Journal:
Journal of integrative bioinformatics
Published Date:
Jun 23, 2025
Abstract
The rapid advancement of Next-Generation Sequencing (NGS) technologies has revolutionized the field of genomics, producing large volumes of data that necessitate sophisticated analytical techniques. This paper introduces a Deep Learning model designed to predict the pathogenicity of genetic variants, a vital component in advancing personalized medicine. The model is trained on a dataset derived from the analysis of NGS outputs, containing a combination of well-defined and ambiguous genetic variants. By employing a semi-supervised learning approach, the model efficiently utilizes both confidently labeled and less certain data. At the core of the methodology is the Feature Tokenizer Transformer architecture, which processes both numerical and categorical genomic information. The preprocessing pipeline includes key steps such as data imputation, scaling, and encoding to ensure high data quality. The results highlight the model's impressive accuracy, particularly in detecting confidently labeled variants, while also addressing the impact of its predictions on less certain (soft-labeled) data.
Authors
Keywords
No keywords available for this article.