Specific heat anomalies and local symmetry breaking in (anti-)fluorite materials: A machine learning molecular dynamics study.

Journal: The Journal of chemical physics
Published Date:

Abstract

Understanding the high-temperature properties of materials with (anti-)fluorite structures is crucial for their application in nuclear reactors. In this study, we employ machine learning molecular dynamics (MLMD) simulations to investigate the high-temperature thermal properties of thorium dioxide, which has a fluorite structure, and lithium oxide, which has an anti-fluorite structure. Our results show that MLMD simulations effectively reproduce the reported thermal properties of these materials. A central focus of this work is the analysis of specific heat anomalies in these materials at high temperatures, commonly referred to as Bredig, pre-melting, or λ-transitions. We demonstrate that a local order parameter, analogous to those used to describe liquid-liquid transitions in supercooled water and liquid silica, can effectively characterize these specific heat anomalies. The local order parameter identifies two distinct types of defective structures: lattice defect-like and liquid-like local structures. Above the transition temperature, liquid-like local structures predominate and the sub-lattice character of mobile atoms disappears.

Authors

  • Keita Kobayashi
    Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan.
  • Hiroki Nakamura
    Digestive Disease Center, Showa University, Northern Yokohama Hospital, Yokohama, Japan.
  • Masahiko Okumura
    CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan.
  • Mitsuhiro Itakura
    CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan.
  • Masahiko Machida
    CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan.

Keywords

No keywords available for this article.