Investigating the diversity and stylization of contemporary user generated visual arts in the complexity entropy plane.

Journal: Scientific reports
Published Date:

Abstract

The advent of computational and numerical methods in recent times has provided new avenues for analyzing art historiographical narratives and tracing the evolution of art styles therein. Here, we investigate an evolutionary process underpinning the emergence and stylization of contemporary user-generated visual art styles using the complexity-entropy (C-H) plane, which quantifies local structures in paintings. Informatizing 149,780 images curated on the DeviantArt and Bēhance platforms from 2010 to 2020, we analyze the relationship between local information in the C-H space and multi-level image features generated by a deep neural network and a feature extraction algorithm. The results reveal significant statistical relationships between the C-H information of visual artistic styles and the dissimilarities of the multi-level image features over time within groups of artworks. By disclosing a particular C-H region where the diversity of image representations is noticeably manifested, our analyses reveal an empirical condition of emerging styles that are both novel in the C-H plane and characterized by greater stylistic diversity. Our research shows that visual art analyses, combined with physics-inspired methodologies and machine learning, can provide macroscopic insights into quantitatively mapping relevant characteristics of an evolutionary process underpinning the creative stylization of uncharted visual arts of given groups and times.

Authors

  • Seunghwan Kim
    Bio-Medical IT Convergence Research Division, Electronics and Telecommunications Research Institute (ETRI), 34129, Daejeon, South Korea.
  • Byunghwee Lee
    Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA.
  • Wonjae Lee
    Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, Michael DeGroote Centre for Learning and Discovery - 3104, Hamilton, ON, L8S 4K1, Canada.

Keywords

No keywords available for this article.