Accelerating Data Set Population for Training Machine Learning Potentials with Automated System Generation and Strategic Sampling.
Journal:
Journal of chemical theory and computation
Published Date:
Jul 2, 2025
Abstract
Machine Learning Interatomic Potentials (MLIPs) offer a powerful way to overcome the limitations of and classical molecular dynamics simulations. However, a major challenge is the generation of high-quality training data sets, which typically require extensive calculations and intensive user intervention. Here, we introduce Strategic Configuration Sampling (SCS), an active learning framework to construct compact and comprehensive data sets for MLIP training. SCS introduces the usage of , collections of MD simulations where geometries and run conditions are set up automatically based on high-level, user defined inputs. To explore nontrivial atomic environments, initial geometries can be assembled dynamically via of structures harvested from preceding runs. Multiple can be run in parallel, each with its own resource budget according to the computational complexity of each system. Besides leveraging the MLIP models trained iteratively, SCS also incorporates pretrained models to steer the exploration MD, thereby eliminating the need for an initial data set. By integrating widely used software, SCS provides a fully open-source, automatic, active learning framework for the generation of data sets in a high-throughput fashion. Case studies demonstrate its versatility and effectiveness to accelerate the deployment of MLIP in diverse materials science applications.
Authors
Keywords
No keywords available for this article.