Identifying features of prior hemorrhage in cerebral cavernous malformations on quantitative susceptibility maps: a machine learning pilot study.
Journal:
Journal of neurosurgery
Published Date:
Jul 4, 2025
Abstract
Features of new bleeding on conventional imaging in cerebral cavernous malformations (CCMs) often disappear after several weeks, yet the risk of rebleeding persists long thereafter. Increases in mean lesional quantitative susceptibility mapping (QSM) ≥ 6% on MRI during 1 year of prospective surveillance have been associated with new symptomatic hemorrhage (SH) during that period. The authors hypothesized that QSM at a single time point reflects features of hemorrhage in the prior year or potential bleeding in the subsequent year. Twenty-eight features were extracted from 265 QSM acquisitions in 120 patients enrolled in a prospective trial readiness project, and machine learning methods examined associations with SH and biomarker bleed (QSM increase ≥ 6%) in prior and subsequent years. QSM features including sum variance, variance, and correlation had lower average values in lesions with SH in the prior year (p < 0.05, false discovery rate corrected). A support-vector machine classifier recurrently selected sum average, mean lesional QSM, sphericity, and margin sharpness features to distinguish biomarker bleeds in the prior year (area under the curve = 0.61, 95% CI 0.52-0.70; p = 0.02). No QSM features were associated with a subsequent bleed. These results provide proof of concept that machine learning may derive features of QSM reflecting prior hemorrhagic activity, meriting further investigation. Clinical trial registration no.: NCT03652181 (ClinicalTrials.gov).
Authors
Keywords
No keywords available for this article.