Personality predicts internalizing symptoms and quality of life in police cadets: a comparison of artificial intelligence and parametric approaches.

Journal: Health & justice
Published Date:

Abstract

BACKGROUND: Police cadets undergo persistent and elevated stress due to continuous training and evaluation. Identifying resilience and risk factors in this population can thus crucially inform management decisions within the police force. Here, in two large cohorts of police cadets (n = 1069, 30% women and n = 1377, 35% women) we investigated whether broad personality traits could predict internalizing symptoms (somatization, depression, and anxiety) as well as mental health-related quality of life (MHRQoL). Moreover, we compared seven popular artificial intelligence and linear regression models (Elastic Net, General Linear Model, Lasso Regression, Neural Networks, Random Forests, and Support Vector Regression) in predicting MHRQoL as a function of all other variables.

Authors

  • Macià Buades-Rotger
    University of Barcelona, Barcelona, Spain. macia.buades.rotger@ub.edu.
  • Ana Martínez Catena
    University of Barcelona, Barcelona, Spain. a.martinez.catena@ub.edu.
  • Guillermo Recio
    University of Barcelona, Barcelona, Spain.
  • Mireia Cano Gallent
    Institut de Seguretat Pública de Catalunya, Mollet del Vallès, Spain.
  • Jordi Niñerola I Maymí
    Institut de Seguretat Pública de Catalunya, Mollet del Vallès, Spain.
  • Anna Figueras Masip
    Institut de Seguretat Pública de Catalunya, Mollet del Vallès, Spain.
  • David Gallardo-Pujol
    Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain.

Keywords

No keywords available for this article.