Learning With Self-Calibrator for Fast and Robust Low-Light Image Enhancement.
Journal:
IEEE transactions on pattern analysis and machine intelligence
Published Date:
Jul 7, 2025
Abstract
Convolutional Neural Networks (CNNs) have shown significant success in the low-light image enhancement task. However, most of existing works encounter challenges in balancing quality and efficiency simultaneously. This limitation hinders practical applicability in real-world scenarios and downstream vision tasks. To overcome these obstacles, we propose a Self-Calibrated Illumination (SCI) learning scheme, introducing a new perspective to boost the model's capability. Based on a weight-sharing illumination estimation process, we construct an embedded self-calibrator to accelerate stage-level convergence, yielding gains that utilize only a single basic block for inference, which drastically diminishes computation cost. Additionally, by introducing the additivity condition on the basic block, we acquire a reinforced version dubbed SCI++, which disentangles the relationship between the self-calibrator and illumination estimator, providing a more interpretable and effective learning paradigm with faster convergence and better stability. We assess the proposed enhancers on standard benchmarks and in-the-wild datasets, confirming that they can restore clean images from diverse scenes with higher quality and efficiency. The verification on different levels of low-light vision tasks shows our applicability against other methods. The project about this work is publicly available at https://github.com/vis-opt-group/SCI.
Authors
Keywords
No keywords available for this article.