Inter-AI Agreement in Measuring Cine MRI-Derived Cardiac Function and Motion Patterns: A Pilot Study.

Journal: Journal of imaging informatics in medicine
Published Date:

Abstract

Manually analyzing a series of MRI images to obtain information about the heart's motion is a time-consuming and labor-intensive task. Recently, many AI-driven tools have been used to automatically analyze cardiac MRI. However, it is still unknown whether the results generated by these tools are consistent. The aim of the present study was to investigate the agreement of AI-powered automated tools for measuring cine MRI-derived cardiac function and motion indices. Cine MRI datasets of 23 healthy volunteers (10 males, 32.7 ± 11.3 years) were processed using heart deformation analysis (HDA, Trufistrain) and Circle CVI 42. The left and right ventricular (LV/RV) end-diastolic volume (LVEDV and RVEDV), end-systolic volume (LVESV and RVESV), stroke volume (LVSV and RVSV), cardiac output (LVCO and RVCO), ejection fraction (LVEF and RVEF), LV mass (LVM), LV global strain, strain rate, displacement, and velocity were calculated without interventions. Agreements and discrepancies of indices acquired with the two tools were evaluated from various aspects using t-tests, Pearson correlation coefficient (r), interclass correlation coefficient (ICC), and coefficient of variation (CoV). Systematic biases for measuring cardiac function and motion indices were observed. In global cardiac function indices, LVEF (56.9% ± 6.4 vs. 57.8% ± 5.7, p = 0.433, r = 0.609, ICC = 0.757, CoV = 6.7%) and LVM (82.7 g ± 21.6 vs. 82.6 g ± 18.7, p = 0.988, r = 0.923, ICC = 0.956, CoV = 11.7%) acquired with HDA and Circle seemed to be exchangeable. Among cardiac motion indices, circumferential strain rate demonstrated good agreements between two tools (97 ± 14.6 vs. 97.8 ± 13.6, p = 0.598, r = 0.89, ICC = 0.943, CoV = 5.1%). Cine MRI-derived cardiac function and motion indices obtained using different AI-powered image processing tools are related but may also differ. Such variations should be considered when evaluating results sourced from different studies.

Authors

  • Kai Lin
    Department of Clinical Laboratory, Air Force General Hospital, PLA Beijing 100142, China.
  • Roberto Sarnari
    Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
  • Daniel Z Gordon
    Department of Radiology, Northwestern University, 737 N Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA.
  • Michael Markl
    Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.).
  • James C Carr
    Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.).

Keywords

No keywords available for this article.