Investigating the Potential of Generative AI Clinical Case-Based Simulations on Radiography Education: A Pilot Study.
Journal:
Journal of imaging informatics in medicine
Published Date:
Jul 8, 2025
Abstract
Education for medical imaging technologists or radiographers in regional and rural areas often faces significant challenges due to limited financial, technological, and teaching resources. Generative AI presents a promising solution to overcome these barriers and support the professional development of radiographers. This pilot study aimed to evaluate the educational value of an in-house AI-based imaging simulation tool designed to generate clinically relevant medical images for professional training purposes. In July 2023, a professional development lecture featuring AI-generated clinical imaging content was delivered to students (Nā=ā122/130) and recent graduates (Nā=ā155/532), alongside a pre-lecture survey. Following the session, participants completed a questionnaire comprising structured and open-ended items to assess their understanding, perceptions, and interest in AI within medical imaging education. Survey results indicated that both students and graduates possessed a foundational awareness of AI applications in medical imaging. Graduates demonstrated significantly higher expectations for clinical realism in AI-generated simulations, likely reflecting their clinical experience. Although the simulator's current capabilities are limited in replicating complex diagnostic imaging, participants acknowledged its pedagogical value, particularly in supporting basic anatomical education. Approximately 50% of respondents expressed interest in further developing their AI knowledge and contributing to the research and development of AI-based educational tools. AI-driven imaging simulation tools have the potential to enhance radiography education and reduce teaching barriers. While further development is needed to improve clinical fidelity, such tools can play a valuable role in foundational training and foster learner engagement in AI innovation.
Authors
Keywords
No keywords available for this article.