Applicability and performance of convolutional neural networks for the identification of periodontal bone loss in periapical radiographs: a scoping review.
Journal:
Oral radiology
Published Date:
Jul 9, 2025
Abstract
The study aimed to review the applicability and performance of various Convolutional Neural Network (CNN) models for the identification of periodontal bone loss (PBL) in digital periapical radiographs achieved through classification, detection, and segmentation approaches. We searched the PubMed, IEEE Xplore, and SCOPUS databases for articles published up to June 2024. After the selection process, a total of 11 studies were included in this review. The reviewed studies demonstrated that CNNs have a significant potential application for automatic identification of PBL on periapical radiographs through classification and segmentation approaches. CNN architectures can be utilized to classify the presence or absence of PBL, the severity or degree of PBL, and PBL area segmentation. CNN showed a promising performance for PBL identification on periapical radiographs. Future research should focus on dataset preparation, proper selection of CNN architecture, and robust performance evaluation to improve the model. Utilizing an optimized CNN architecture is expected to assist dentists by providing accurate and efficient identification of PBL.
Authors
Keywords
No keywords available for this article.