A literature review of radio-genomics in breast cancer: Lessons and insights for low and middle-income countries.
Journal:
Tumori
Published Date:
Jul 15, 2025
Abstract
To improve precision medicine in breast cancer (BC) decision-making, radio-genomics is an emerging branch of artificial intelligence (AI) that links cancer characteristics assessed radiologically with the histopathology and genomic properties of the tumour. By employing MRIs, mammograms, and ultrasounds to uncover distinctive radiomics traits that potentially predict genomic abnormalities, this review attempts to find literature that links AI-based models with the genetic mutations discovered in BC patients. The review's findings can be used to create AI-based population models for low and middle-income countries (LMIC) and evaluate how well they predict outcomes for our cohort.Magnetic resonance imaging (MRI) appears to be the modality employed most frequently to research radio-genomics in BC patients in our systemic analysis. According to the papers we analysed, genetic markers and mutations linked to imaging traits, such as tumour size, shape, enhancing patterns, as well as clinical outcomes of treatment response, disease progression, and survival, can be identified by employing AI. The use of radio-genomics can help LMICs get through some of the barriers that keep the general population from having access to high-quality cancer care, thereby improving the health outcomes for BC patients in these regions. It is imperative to ensure that emerging technologies are used responsibly, in a way that is accessible to and affordable for all patients, regardless of their socio-economic condition.
Authors
Keywords
No keywords available for this article.