Assessment of local recurrence risk in extremity high-grade osteosarcoma through multimodality radiomics integration.

Journal: Acta radiologica (Stockholm, Sweden : 1987)
Published Date:

Abstract

BackgroundA timely assessment of local recurrence (LoR) risk in extremity high-grade osteosarcoma is crucial for optimizing treatment strategies and improving patient outcomes.PurposeTo explore the potential of machine-learning algorithms in predicting LoR in patients with osteosarcoma.Material and MethodsData from patients with high-grade osteosarcoma who underwent preoperative radiograph and multiparametric magnetic resonance imaging (MRI) were collected. Machine-learning models were developed and trained on this dataset to predict LoR. The study involved selecting relevant features, training the models, and evaluating their performance using the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). DeLong's test was utilized for comparing the AUCs.ResultsThe performance (AUC, sensitivity, specificity, and accuracy) of four classifiers (random forest [RF], support vector machine, logistic regression, and extreme gradient boosting) using radiograph-MRI as image inputs were stable (all Hosmer-Lemeshow index >0.05) with the fair to good prognosis efficacy. The RF classifier using radiograph-MRI features as training inputs exhibited better performance (AUC = 0.806, 0.868) than that using MRI only (AUC = 0.774, 0.771) and radiograph only (AUC = 0.613 and 0.627) in the training and testing sets ( <0.05) while the other three classifiers showed no difference between MRI-only and radiograph-MRI models.ConclusionThis study provides valuable insights into the use of machine learning for predicting LoR in osteosarcoma patients. These findings emphasize the potential of integrating radiomics data with algorithms to improve prognostic assessments.

Authors

  • Zhendong Luo
    Department of Radiology, University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
  • Renyi Liu
    Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
  • Jing Li
    Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
  • Qiongyu Ye
    Department of Ultrasonography, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, PR China.
  • Ziyan Zhou
    Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
  • Xinping Shen
    Department of Radiology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, PR China.

Keywords

No keywords available for this article.