Illuminating radiogenomic signatures in pediatric-type diffuse gliomas: insights into molecular, clinical, and imaging correlations. Part II: low-grade group.
Journal:
La Radiologia medica
Published Date:
Jul 16, 2025
Abstract
The fifth edition of the World Health Organization classification of central nervous system tumors represents a significant advancement in the molecular-genetic classification of pediatric-type diffuse gliomas. This article comprehensively summarizes the clinical, molecular, and radiological imaging features in pediatric-type low-grade gliomas (pLGGs), including MYB- or MYBL1-altered tumors, polymorphous low-grade neuroepithelial tumor of the young (PLNTY), and diffuse low-grade glioma, MAPK pathway-altered. Most pLGGs harbor alterations in the RAS/MAPK pathway, functioning as "one pathway disease". Specific magnetic resonance imaging features, such as the T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign in MYB- or MYBL1-altered tumors and the transmantle-like sign in PLNTYs, may serve as non-invasive biomarkers for underlying molecular alterations. Recent advances in radiogenomics have enabled the differentiation of BRAF fusion from BRAF V600E mutant tumors based on magnetic resonance imaging characteristics. Machine learning approaches have further enhanced our ability to predict molecular subtypes from imaging features. These radiology-molecular correlations offer potential clinical utility in treatment planning and prognostication, especially as targeted therapies against the MAPK pathway emerge. Continued research is needed to refine our understanding of genotype-phenotype correlations in less common molecular alterations and to validate these imaging biomarkers in larger cohorts.
Authors
Keywords
No keywords available for this article.